Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 166244, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37597567

RESUMO

The growing amount of tannery sludge (TS) generated from leather processing often undergoes uncontrolled landfilling, or open dumping, releasing a significant volume of harmful pollutants, including carcinogenic chromium (Cr) into the air, water, and soil. Therefore, the sustainable TS management through advanced valorization technologies becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental, health, and social impacts. Moreover, TS, as biomass, can be considered a renewable energy source for bioenergy generation, which could be a viable solution for meeting contemporary environmental standards and expediting transition towards a circular economy. However, TS valorization is sensitive and critical due to the potential risk of transforming Cr(III) to Cr(VI) during the valorization process. Therefore, there is an urgency to consider efficient and holistic TS valorization technologies in the design, implementation, and operations phases to avoid any environmental and health hazards. In pursuit of this goal, this systematic literature review (SLR) comprehensively and critically analyzes the existing TS valorization processes to develop sustainable energy recovery solutions from TS. This SLR contributes uniquely to the existing literature in different ways. Firstly, it provides a critical evaluation of the current TS valorization technologies identifying the available waste-to-energy recovery options. Secondly, the review encompasses extensive research from three reputed databases such as Scopus, Web of Science, and ScienceDirect, without temporal restrictions to offer a comprehensive understanding of current TS management practices and available valorization techniques. Moreover, the review categorized 124 published papers into distinct groups, revealing promising avenues for future research in this field. The findings indicated that most of the work concentrating on Chrome (Cr) recovery, pyrolysis, anaerobic co-digestion, and solidification while gasification and biodiesel or biofuel production from TS remained largely unexplored. Additionally, vital aspects such as process optimization, life cycle assessment of different valorization techniques, environmental, economy, energy, emergy, and exergy (5E) analysis, life cycle energy balance, and techno-economic analysis including exergoeconomic and exergoenvironmental are completely absent in the literature. Future studies need to concentrate on process optimization, exergy and energy analysis, and techno-economic assessment including exergoeconomic and exergoenvironmental analysis to understand the feasibility and environmental benefits of various TS valorization technologies and to develop industry-scale valorization plants for TS management in an economically and ecologically sustainable manner. Moreover, the review will serve as a comprehensive guide for scholars, authorities, and stakeholders to advance research in this field and formulate policies for the eco-friendly management of TS, paving the way towards clean energy solutions.

2.
J Environ Manage ; 344: 118470, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399626

RESUMO

Sustainable valorization of tannery sludge (TS) is vital for achieving several sustainable development goals (SDGs) in the tannery industry. TS is considered a hazardous waste by-product posing a significant environmental challenge. However, TS can be utilized for energy or resource recovery by considering it as biomass and implementing the circular economy (CE) concept. Therefore, this study aims to develop an innovative DPSIR (Driver, Pressure, State, Impact, and Response) framework for promoting sustainable valorization of TS. Further, the study extends to quantify the importance of subjective DPSIR factors by offering interval-valued intuitionistic fuzzy number-based best worst method (IVIFN-BWM), which is relatively new in the literature and able to deal with the uncertainty, inconsistency, imprecise, and vagueness in the decision-making process. The study also investigates the most appropriate TS valorization technologies concerning identified DPSIR factors using a novel IVIFN-combined compromise solution (CoCoSo) approach. This research contributes to the literature by developing a comprehensive solution approach that combines the DPSIR framework, IVIFN-BWM, and IVIFN-CoCoSo method in addressing sustainability and resource recovery challenges for the tannery industry. The research findings highlight the potential of sustainable valorization of TS in reducing the waste amount and promoting sustainability and CE practices in the tannery industry. The findings indicated that response factors 'creation of national-level policies and awareness campaign' and 'facilitating financial support to adopt waste valorization technologies' received the highest priority among other DPSIR factors for managing and fostering sustainable valorization of TS. The IVIFN-CoCoSo analysis confirmed that the most promising TS valorization technology is 'gasification', which is followed by pyrolysis, anaerobic digestion, and incineration. The study's implications extend to policymakers, industrial practitioners, and researchers, who can leverage the research findings to develop more sustainable TS management practices in the tannery industry.


Assuntos
Resíduos Perigosos , Esgotos , Incineração , Incerteza , Desenvolvimento Sustentável
3.
Comput Ind Eng ; 177: 109055, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36741206

RESUMO

The recent COVID-19 pandemic has significantly affected emerging economies' global supply chains (SCs) by disrupting their manufacturing activities. To ensure business survivability during the current and post-COVID-19 era, it is crucial to adopt artificial intelligence (AI) technologies to renovate traditional manufacturing activities. The fifth industrial revolution, Industry 5.0 (I5.0), and artificial intelligence (AI) offer the overwhelming potential to build an inclusive digital future by ensuring supply chain (SC) resiliency and sustainability. Accordingly, this research aims to identify, assess, and prioritize the AI-based imperatives of I5.0 to improve SC resiliency. An integrated and intelligent approach consisting of Pareto analysis, the Bayesian approach, and the Best-Worst Method (BWM) was developed to fulfill the objectives. Based on the literature review and expert opinions, nine AI-based imperatives were identified and analyzed using Bayesian-BWM to evaluate their potential applicability. The findings reveal that real-time tracking of SC activities using the Internet of Things (IoT) is the most crucial AI-based imperative to improving a manufacturing SC's survivability. The research insights can assist industry leaders, practitioners, and relevant stakeholders in dealing with the impacts of large-scale SC disruptions in the post-COVID-19 era.

4.
J Hazard Mater ; 423(Pt A): 127041, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34488103

RESUMO

Various toxic chemicals are discharging to the environment due to rapid industrialization and polluting soil, water, and air causing numerous diseases including life-threatening cancer. Among these pollutants, Cr(VI) or hexavalent chromium is one of the most carcinogenic and toxic contaminants hostile to human health and other living things. Therefore, along with other contaminants, the removal of Cr(VI) efficiently is very crucial to keep our environment neat and clean. On the other hand, silica has a lot of room to modify its surfaces as it is available with various sizes, shapes, pore sizes, surface areas etc. and the surface silanol groups are susceptible to design and prepare adsorbents for Cr(VI). This review emphases on the progress in the development of different types of silica-based adsorbents by modifying the surfaces of silica and their application for the removal of Cr(VI) from wastewater. Toxicity of Cr(VI), different silica surface modification processes, and removal techniques are also highlighted. The adsorption capacities of the surface-modified silica materials with other parameters are discussed extensively to understand how to select the best condition, silica and modifiers to achieve optimum removal performance. The adsorption mechanisms of various adsorbents are also discussed. Finally, future prospects are summarized and some suggestions are given to enhance the adsorption capacities of the surface-modified silica materials.


Assuntos
Poluentes Químicos da Água , Adsorção , Cromo/análise , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dióxido de Silício , Poluentes Químicos da Água/análise
5.
J Bus Res ; 136: 316-329, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538979

RESUMO

The COVID-19 pandemic has revealed the fragility of global supply chains arising from raw material scarcity, production and transportation disruption, and social distancing. Firms need to carefully anticipate the difficulties during recovery and formulate appropriate strategies to ensure the survival of their businesses and supply chains. To enhance awareness of the issues, this research aims to identify and model recovery challenges in the context of the Bangladeshi ready-made garment industry. A Delphi-based grey decision-making trial and evaluation laboratory (DEMATEL) methodology was used to analyze the data. While the Delphi method helped identify the major supply chain recovery challenges from the impacts of the COVID-19 pandemic, the grey DEMATEL approach helped categorize the causal relationships among these challenges. Of the 23 recovery challenges finalized, 12 are causal challenges. The study's findings can assist decision-makers in developing strategic policies to overcome the recovery challenges in the post-COVID-19 era.

6.
Transp Res E Logist Transp Rev ; 148: 102271, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33613082

RESUMO

The global spread of the novel coronavirus, also known as the COVID-19 pandemic, has had a devastating impact on supply chains. Since the pandemic started, scholars have been researching and publishing their studies on the various supply-chain-related issues raised by COVID-19. However, while the number of articles on this subject has been steadily increasing, due to the absence of any systematic literature reviews, it remains unclear what aspects of this disruption have already been studied and what aspects still need to be investigated. The present study systematically reviews existing research on the COVID-19 pandemic in supply chain disciplines. Through a rigorous and systematic search, we identify 74 relevant articles published on or before 28 September 2020. The synthesis of the findings reveals that four broad themes recur in the published work: namely, impacts of the COVID-19 pandemic, resilience strategies for managing impacts and recovery, the role of technology in implementing resilience strategies, and supply chain sustainability in the light of the pandemic. Alongside the synthesis of the findings, this study describes the methodologies, context, and theories used in each piece of research. Our analysis reveals that there is a lack of empirically designed and theoretically grounded studies in this area; hence, the generalizability of the findings, thus far, is limited. Moreover, the analysis reveals that most studies have focused on supply chains for high-demand essential goods and healthcare products, while low-demand items and SMEs have been largely ignored. We also review the literature on prior epidemic outbreaks and other disruptions in supply chain disciplines. By considering the findings of these articles alongside research on the COVID-19 pandemic, this study offers research questions and directions for further investigation. These directions can guide scholars in designing and conducting impactful research in the field.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33400113

RESUMO

This study develops a mathematical model to mitigate disruptions in a three-stage (i.e., supplier, manufacturer, retailer) supply chain network subject to a natural disaster like COVID-19 pandemic. This optimization model aims to manage supply chain disruptions for a pandemic situation where disruptions can occur to both the supplier and the retailer. This study proposes an inventory policy using the renewal reward theory for maximizing profit for the manufacturer under study. Tested using two heuristics algorithms, namely the genetic algorithm (GA) and pattern search (PS), the proposed inventory-based disruption risk mitigation model provides the manufacturer with an optimum decision to maximize profits in a production cycle. A sensitivity analysis was offered to ensure the applicability of the model in practical settings. Results reveal that the PS algorithm performed better for such model than a heuristic method like GA. The ordering quantity and reordering point were also lower in PS than GA. Overall, it was evident that PS is more suited for this problem. Supply chain managers need to employ appropriate inventory policies to deal with several uncertain conditions, for example, uncertainties arising due to the COVID-19 pandemic. This model can help managers establish and redesign an inventory policy to maximize the profit by considering probable disruptions in the supply chain network.

8.
Sustain Prod Consum ; 26: 411-427, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33015267

RESUMO

Motivated by the COVID-19 pandemic and the challenges it poses to supply chain sustainability (SCS), this research aims to investigate the drivers of sustainable supply chain (SSC) to tackle supply chain disruptions in such a pandemic in the context of a particular emerging economy: Bangladesh. To achieve this aim, a methodology is proposed based on the Pareto analysis, fuzzy theory, total interpretive structural modelling (TISM), and Matriced Impacts Cruoses Multiplication Applique a un Classement techniques (MICMAC). The proposed methodology is tested using experienced supply chain practitioners as well as academic experts' inputs from the emerging economy. This study reveals the influential relationships and indispensable links between the drivers using fuzzy TISM to improve the SCS in the context of COVID-19. Findings also reveal that financial support from the government as well as from the supply chain partners is required to tackle the immediate shock on SCS due to COVID-19. Also, policy development considering health protocols and automation is essential for long-term sustainability in supply chains (SCs). Additionally, MICMAC analysis has clustered the associated drivers to capture the insights on the SCS. These findings are expected to aid industrial managers, supply chain partners, and government policymakers to take initiatives on SSC issues in the context of the COVID-19 pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...